EQUILIBRES LIQUIDE-VAPEUR ISOTHERMES DE MELANGES BINAIRES DE LA PIPERIDINE ET DE LA N-METHYL PIPERIDINE AVEC CERTAINS ETHERS

F. B. Belaribi, A. Ait-Kaci et J. Jose¹

Université des Sciences et de la Technologie Houari Boumédiène, Laboratoire de Thermodynamique des Solutions. BP 139 Dar El Beida, Alger, Algérie ¹Université de Lyon I, Laboratoire de Chimie Analytique, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, Lyon, France

(Reçu le 26 Février 1995)

Abstract

The authors have measured the vapour pressure of the four binary systems, piperidine + *tert*-butyl methyl ether, piperidine + 1,4 dioxane, piperidine + *tert*ahydropyrane and Nmethyl piperidine + *tert*-butyl methyl ether. The measurements were carried out using an isoteniscope built by J. Jose [1]. The vapour pressure, excess Gibbs free energies at 298.15, 303.15, 313.15, 323.15, 333.15 and 343.15 K, are reported for these mixtures. The excess Gibbs free energies have been fitted to the Redlich-Kister equation.

Keywords: excess Gibbs free energie, isoteniscope, piperidines, vapour pressure

Introduction

La littérature est très riche en données thermodynamiques expérimentales sur les mélanges binaires organiques liquides, mais reste cependant incomplète. Aussi nous nous proposons à travers cet article, de l'enrichir avec de nouvelles données expérimentales, se rapportant aux mélanges binaires, amines + éthers.

Dans ce but, nous avons donc établi expérimentalement dans l'intervalle de température 298.15–343.15 K, les diagrammes d'équilibre liquide-vapeur des systèmes : pipéridine + 1,4 dioxane, pipéridine + tétrahydropyranne, pipéridine + tert-butyl méthyl éther et N-méthyl pipéridine + tert- butyl méthyl éther.

Pour cela les pressions de vapeur des composés purs et des mélanges binaires ont été mesurées à l'aide d'un isoténiscope construit au laboratoire par J. Jose [1]. Les enthalpies libres molaires totales d'excès ont été calculées par la méthode de Barker [2], en représentant les valeurs expérimentales d'équilibre liquide-vapeur à l'aide de l'équation de Redlich-Kister. Les produits utilisés, d'origine Janssen n'ont pas subi de purification supplémentaire.

Résultats

Pressions de vapeur des composés purs

Les pressions de vapeur expérimentales des constituants purs ont été ajustées par la méthode des moindres carrés itérative à l'aide de l'équation d'Antoine:

$$\log_{10}P = A - \frac{B}{t+C} \tag{1}$$

La pression P et la température t, expérimentales, sont exprimées en millimètres de mercure et en degré Celsius, respectivement.

Pour la N-méthyl pipéridine et le *tert*-butyl méthyl éther, nous avons réuni dans le tableau 1, les pressions de vapeur P et les températures t, expérimentales, dans le tableau 2, les coefficients A, B, C ainsi que l'écart relatif moyen

N-méthyl pipéridine		<i>tert</i> -butyl	méthyl éther
t/ °C	P/mmHg	t/ °C	P/mmHg
24.96	39.034	25.22	253.290
30.00	50.057	25.25	253.365
35.00	63.218	30.05	307.688
40.00	79.264	35.00	373.291
45.05	99.082	40.00	449.992
50.00	122.409	45.00	538.530
55.00	150.403	49.00	618.919
60.00	183.211		
65.00	221.397		
70.00	266.609		

Tableau 1 Pressions de vapeur expérimentales des corps purs en fonction de la température

Tableau 2 Paramètres de lissage obtenus pour l'équation d'Antoine (1)

	N-méthyl pipéridine	tert-butyl méthyl éther
А	7.3404	6.73961
В	1524.61	1048.54
В	240.2359	216.5887
100 $ \delta P/P _{\text{moyen}}$	0.11	0.03

 $\delta P/P = (P_{exp} - P_{cal})/P_{exp}$

 $\delta P/P$ exprimé en pourcentage obtenus après lissage. Nos résultats expérimentaux sont dans l'ensemble en bon accord avec les données de la littérature [3, 4, 5, 7, 12].

En effet, pour le *tert*-butyl méthyl éther, dans l'intervalle de température 25-50°C, les données de pression de vapeur, reportées par Ambrose *et coll.* [12], présentent par rapport à nos résultats, un écart relatif moyen égal à 0.15%. Pour la N-méthyl pipéridine, S. Cabani et N. Ceccanti [5] ont déterminé la pression de vapeur à 25°C, et ont reporté deux valeurs, 36.0 mmHg et 37.0 mmHg. L'écart relativement important, entre notre valeur et les résultats obtenus par ces auteurs, proviendrait probablement de la non purification de N-méthyl pipéridine.

Pour les autres composés, nos résultats et les valeurs correspondantes de la littérature, sont reportés dans un autre article [13].

Pressions de vapeur des mélanges binaires

Les pressions de vapeur des quatre systèmes ont été mesurées à six températures, dans l'intervalle 298.15–343.15 K. Les résultats expérimentaux sont donnés dans le tableau 3 et sont représentés par les figures 1 à 4.

Dans le tableau 3 nous avons réuni pour chaque système, à chaque température, la fraction molaire x_1 du constituant 1 dans la phase liquide et la pression totale P, expérimentales, ainsi que l'écart relatif moyen $\delta P/P$ exprimé en pourcentage.

Tableau 3 Pression totale P,	expérimentale en fon	nction de la tempéra	ture et la fraction
molaire x_1 du cons	stituant 1		

Fraction	P/kPa					
molaire x_1	298.15 K	303.15 K	313.15 K	323.15 K	333.15 K	343.15 K

Système: pipéridine (1) – 1,4 dioxane (2)

0.000	4.768	6.170	10.030	15.727	23.880	35.229
0.093	4.928	6.373	10.342	16.184	24.508	36.065
0.180	5.034	6.504	10.535	16.449	24.891	36.554
0.312	5.130	6.611	10.654	16.613	25.097	36.817
0.471	5.119	6.592	10.616	16.523	24.922	36.543
0.645	4.967	6.399	10.314	16.062	24.247	35.572
0.819	4.669	6.027	9.733	15.213	22.995	33.790
0.951	4.260	5.523	9.000	14.140	21.449	31.648
1.000	4.041	5.255	8.610	13.581	20.712	30.648
100 $ \delta P/P _{\rm m}$	0.09	0.07	0.05	0.03	0.02	0.02

Fraction			P/ kPa					
molaire x_1	303.15 K	313.15 K	323.15 K	333.15 K	343.15 K			
Système: pipéridine (1) – tétrahydropyranne (2)								
0.000	_	11.839	18.343	27.512	40.087			
0.110	_	11.260	17.485	26.246	38.297			
0.243	_	10.445	16.247	24.530	35.871			
0.406	9.470	14.786	22.409	32.908	47.214			
0.535	8.660	13.592	20.680	30.504	43.910			
0.673	7.731	12.225	18.708	27.789	40.226			
0.846	6.490	10.386	16.094	24.153	35.287			
0.940	5.780	9.376	14.631	22.138	32.526			
1.000	5.255	8.610	13.581	20.712	30.648			
$100 \delta P/P _{\rm m}$	0.11	0.15	0.08	0.08	0.04			
x_1	298.15 K	303.15	K	313.15 K	323.15 K			
Système: pipéridine (1) – <i>tert</i> -butyl méthyl éther (2)								
0.000	33.447	40.958	3	59.994	85.379			
0.099	30.707	37.650)	55.175	78.727			
0.263	26.359	32.300	5	47.506	67.963			
0.469	21.071	25.860	6	38.083	54.656			
0.603	17.428	21.433	3	31.682	45.648			
0.772	12.400	15.323	3	22.898	33.319			
0.874	9.015	11.223	3	17.004	25.120			
1.000	4.041	5.25	5	8.610	13.581			
100 δ <i>P/P</i> _m	0.11	0.10		0.06	0.04			
S	Système: N-mé	thyl pipéridine (1) – <i>tert</i> -but	yl méthyl éther (2)			
0.000	33.447	40.958	3	59.994	85.379			
0.096	30.820	37.78	5	55.382	79.037			
0.226	27.357	33.552	2	49.277	70.472			
0.402	22.666	27.850)	41.053	58.868			
0.554	18.564	22.85	1	33.837	48.740			
0.712	14.096	17.454	4	26.095	38.008			
0.911	8.149	10.212	2	15.663	23.370			
1.000	5.216	6.674	4	10.568	16.320			
$100 \delta P/P _{m}$	0.07	0.05	<u></u>	0.04	0.06			

Tableau 3 (suite)

 $\delta P/P = P_{\rm exp} - P_{\rm cal}/P_{\rm exp}$

248

Fig. 1a Diagramme expérimental d'équilibre liquide-vapeur du système Pipéridine (1) – 1,4 Dioxane (2) à trois températures: 0-313.15 K; x-303.15 K; •-289.15 K. Les courbes sont calculées à partir de l'équation (4)

Fig. 1b Diagramme expérimental d'équilibre liquide-vapeur du système Pipéridine (1) – 1,4 Dioxane (2) à trois températures: △ -343.15 K; ◆ -333.15 K; □ -323.15 K. Les courbes sont calculées à partir de l'équation (4)

Fig. 2a Diagramme expérimental d'équilibre liquide-vapeur du système
Pipéridine (1) -Tétrahydropyranne (2) à trois températures: □-323.15 K; o-313.15 K; x-303.15 K. Les courbes sont calculées à partir de l'équation (4)

Fig. 2b Diagramme expérimental d'équilibre liquide-vapeur du système
Pipéridine (1) - Tétrahydropyranne (2) à deux températures: △-343.15 K; ◆-333.15 K.
Les courbes sont calculées à partir de l'équation (4)

Fig. 3a Diagramme expérimental d'équilibre liquide-vapeur du système
Pipéridine (1) -tert-Butyl méthyl éther (2) à trois températures: 0-313.15 K;
x-303.15 K; •-298.15 K. Les courbes sont calculées à partir de l'équation (4)

Fig. 3b Diagramme expérimental d'équilibre liquide-vapeur du système
Pipéridine (1) -tert-Butyl méthyl éther (2) à trois températures: △-343.15 K
◆-333.15 K; □-323.15 K. Les courbes sont calculées à partir de l'équation (4)

Fig. 4a Diagramme expérimental d'équilibre liquide-vapeur du système N-méthyl pipéridine (1) – *tert*-Butyl méthyl éther (2) à trois températures: o-313.16 K; x-303.15 K;
•-298.15 K. Les courbes sont calculées à partir de l'équation (4)

Fig. 4b Diagramme expérimental d'équilibre liquide-vapeur du système N-méthyl pipéridine (1) - tert-Butyl méthyl éther (2) à trois températures: △-343.15 K; ◆-333.15 K;
□ -323.5 K. Les courbes sont calculées à partir de l'équation (4)

Pour calculer l'enthalpie libre molaire totale d'excès et la composition de la phase vapeur, nous avons utilisé la méthode de Barker [2]. Ce calcul nécessite la connaissance du volume molaire v_i° et du second coefficient molaire du viriel B_{ii} de chaque composé *i* à chaque température. Les seconds coefficients molaires du viriel ont été calculés par la méthode de Tsonopoulos [10, 11]. Les volumes molaires ont été déduits des données de la littérature [6, 7, 8, 14]. Le second coefficient molaire croisé du viriel B_{12} , pour le mélange a été pris comme combinaison linéaire des seconds coefficients molaires du viriel des corps purs correspondants.

Dans le tableau 4, nous avons réuni pour la N-méthyl pipéridine et le *tert*butyl méthyl éther, les volumes molaires ainsi que les seconds coefficients molaires du viriel, à chaque température. Pour les autres composés, les valeurs de ces deux grandeurs ont été déjà reportées dans un précédent article [13].

	N-méthyl I	pipéridine	tert-butyl méthyl éther		
<i>T</i> /K	ν_i^o	$-B_{ii}$	ν°	- <i>B</i> _{ii}	
		³ ·mol ⁻¹			
298.15	122	2315	120	1504	
303.15	123	2189	121	1439	
313.15	124	1972	122.5	1322	
323.15	125.5	1791	124	1220	
333.15	127	1638	126	1131	
343.15	128	1507	127.5	1052	

 Tableau 4 Volumes molaires à l'état liquide, et seconds coefficients molaires du viriel, des corps purs

Les enthalpies libres molaires totales d'excès ont été représentées à l'aide de l'équation de Redlich-Kister

$$\frac{g^{\rm E}}{RT} = x_1 x_2 \sum_{i=1}^{\rm n} A_i (x_1 - x_2)^{i-1}$$
(2)

où x_1 est la fraction molaire du constituant *i* dans le mélange.

Les valeurs de l'enthalpie libre molaire totale d'excès g^E , celles des paramètres de lissage A_i , ainsi que les déviations standards σA_i de ces paramètres sont réunies dans les tableaux 5 à 8.

Pour chaque système, et à chaque température nous avons calculé, la fraction molaire y_i du composé 1 dans la phase vapeur ainsi que la pression totale, P pour des fractions molaires x_1 variant à intervalle régulier. Les équations utilisées sont:

Fraction	$g^{\rm E}$ / J·mol ⁻¹					
molaire, x_1	298.15 K	303.15 K	313.15 K	323.15 K	333.15 K	343.15 K
0.0	0	0	0	0	0	0
0.1	120	120	117	114	110	105
0.2	220	216	208	201	193	184
0.3	295	288	273	261	251	240
0.4	344	333	313	298	286	273
0.5	364	351	328	310	296	283
0.6	353	341	316	299	284	271
0.7	312	301	279	264	248	237
0.8	238	231	214	204	190	180
0.9	134	131	122	116	107	101
1.0	0	0	0	0	0	0

Tableau 5a Enthalpie libre molaire totale d'excès g^E en fonction de la température et la composition du système: pipéridine (1) – 1,4 dioxane (2)

Tableau 5b Paramètres de lissage de l'équation de Redlich-Kister

<i>T /</i> K	<i>A</i> 1	σA_1	A_2	σA_2	<i>A</i> ₃	$ \sigma A_3 $
298.15	0.5869	0.0033	0.0393	0.0069	-0.0263	0.0150
303.15	0.5576	0.0026	0.0302	0.0054	-0.0099	0.0118
313.15	0.5031	0.0016	0.0122	0.0033	0.0094	0.0073
323.15	0.4621	0.0011	0.0058	0.0023	0.0220	0.0050
333.15	0.4278	0.0010	-0.0065	0.0021	0.0111	0.0045
343.15	0.3967	0.0007	-0.0076	0.0014	0.0070	0.0031

Tableau 6a Système: pipéridine (1) – tétrahydropyranne (2) Enthalpie libre totale d'excès g^{E}

Fraction			$g^{\rm E}$ / J·mol ⁻¹		
molaire, x_1	303.15 K	313.15 K	323.15 K	333.15 K	343.15 K
0.0	0	0	0	0	0
0.1	40	35	34	29	29
0.2	67	59	56	49	49
0.3	84	73	69	61	61
0.4	93	81	76	68	66
0.5	96	84	77	69	67
0.6	93	81	74	66	63
0.`7	83	73	65	59	55
0.8	66	59	52	46	43
0.9	40	35	31	27	25
1.0	0	0	0	0	0

<i>T</i> /K	A_1	$ \sigma A_1 $	<i>A</i> ₂	$ \sigma A_2 $	<i>A</i> ₃	TA 3
303.15	0.1520	0.0042	-0.0021	0.0085	0.0369	0.0147
313.15	0.1287	0.0051	-0.0006	0.0106	0.0336	0.0185
323.15	0.1147	0.0027	-0.0079	0.0056	0.0277	0.0099
333.15	0.1000	0.0027	-0.0044	0.0057	0.0188	0.0101
343.15	0.0940	0.0018	-0.0109	0.0038	0.0162	0.0069

Tableau 6b Paramètres de lissage de l'équation de Redlich-Kister pour le système:pipéridine (1) - tétrahydropyranne (2)

Tableau 7a Enthalpie libre molaire totale d'excès g^{E} du système: pipéridine (1) – *tert*-butyl méthyl éther (2)

Fraction	$g^{\rm E}$ / J·mol ⁻¹						
molaire, x_1	298.15 K	303.15 K	313.15 K	323.15 K			
0.0	0	0	0	0			
0.1	74	72	70	71			
0.2	132	129	124	125			
0.3	175	171	164	164			
0.4	201	197	189	187			
0.5	211	207	199	195			
0.6	205	200	192	188			
0.7	181	177	170	166			
0.8	140	136	131	128			
0.9	80	77	74	73			
1.0	0	0	0	0			

 Tableau 7b Paramètres de lissage de l'équation de Redlich-Kister pour le système:

 pipéridine (1) – tert-butyl méthyl éther (2)

<i>T</i> /K	A_1	$ \sigma A_1 $	<i>A</i> ₂	$ \sigma A_2 $	<i>A</i> ₃	$ \sigma A_3 $
298.15	0.3409	0.0026	0.0155	0.0045	0.0050	0.0077
303.15	0.3280	0.0025	0.0147	0.0044	0.0024	0.0075
313.15	0.3051	0.0014	0.0123	0.0024	0.0019	0.0041
323.15	0.2907	0.0009	0.0045	0.0016	0.0099	0.0027

$$y_{i} = x_{i} \frac{P_{i}^{o}}{P} \exp\left[\frac{g_{i}^{E} - (B_{ii} - v_{i}^{o})(P - P_{i}^{o}) - 2P \cdot B_{12}^{E}(1 - y_{i})^{2}}{RT}\right]$$
(3)

$$P = \sum_{i=1}^{2} x_i P_i^o \cdot \exp\left[\frac{g_i^{\rm E} - (B_{\rm ii} - v_i^o)(P - P_i^o) - 2P \cdot B_{\rm I2}^{\rm E}(1 - y_i)^2}{RT}\right]$$
(4)

255

J. Thermal Anal., 46, 1996

•	•		• • •	•
Fraction		g ^E / J	·mol ⁻¹	
molaire, x_1	298.15 K	303.15 K	313.15 K	323.15 K
0.0	0	0	0	0
0.1	38	38	38	41
0.2	66	67	68	71
0.3	86	86	88	91
0.4	97	97	100	102
0.5	100	100	104	106
0.6	96	96	100	102
0.7	84	84	88	90
0.8	65	65	67	69
0.9	37	37	38	40
1.0	0	0	0	0

Tableau 8a Enthalpie libre molaire totale d'excès g^E en fonction de la température et la composition du système: N-méthyl pipéridine (1) – *tert*-butyl méthyl éther (2)

Tableau 8b Paramètres de lissage de l'équation de Redlich-Kister

<i>T /</i> K	A_1	$ \sigma A_1 $	A2	$ \sigma A_2 $	<i>A</i> ₃	$ \sigma A_3 $
298.15	0.1616	0.0023	-0.0030	0.0039	0.0103	0.0054
303.15	0.1592	0.0017	0.0036	0.0028	0.0095	0.0039
313.15	0.1592	0.0012	-0.0002	0.0021	0.0071	0.0029
323.15	0.1576	0.0024	0.0028	0.0043	0.0143	0.0060

où

$$B_{12} = B_{12} - (B_{11} + B_{22}) \quad \text{et} \quad P_i^{0} = P \quad \& \quad x_i = 1$$
$$\frac{g_1^{\text{E}}}{RT} = x_2^2 \left[A_1 + \sum_{i=2}^n A_i ((2i-1)x_1 - x_2)(x_1 - x_2)^{i-2} \right]$$
$$\frac{g_2^{\text{E}}}{RT} = x_1^2 \left[A_2 + \sum_{i=2}^n A_i (x_1 - (2i-1)x_2)(x_1 - x_2)^{i-2} \right]$$

Pour illustrer ce calcul, nous avons alors choisi les deux températures extrêmes. Nous avons réuni les résultats dans le tableau 9 et représenté les diagrammes d'équilibre liquide-vapeur (P, x_1, y_1) sur les figures 5 à 8.

Conclusion

Nos mesures de pression de vapeur, effectuées sur les corps purs, ont conduit à des résultats en bon accord avec ceux de la littérature [3, 4, 5, 7, 12]. Pour les quatre systèmes binaires étudiés nous ne disposons pas de données de comparaison.

Les systèmes étudiés présentent tous un écart à l'idéalité. Cet écart est cependant assez faible pour le système pipéridine + tétrahydropyranne.

	T = 29	8.15 K	T = 34	43.15 K
x_1	<i>y</i> 1	P/kPa	<i>y</i> 1	P/kPa
0.0	0.000	4.768	0.000	35.229
0.1	0.128	4.943	0.118	36.120
0.2	0.232	5.057	0.217	36.617
0.3	0.319	5.117	0.304	36.808
0.4	0.394	5.130	0.385	36.740
0.5	0.464	5.100	0.465	36.437
0.6	0.534	5.026	0.547	35.898
0.7	0.611	4.902	0.635	35.104
0.8	0.703	4.713	0.734	34.015
0.9	0.825	4.436	0.851	32.563
1.0	1.000	4.041	1.000	30.648

Tableau 9 Pression et composition de la phase vapeur, calculéesSystème: pipéridine (1) - 1,4 dioxane (2)

Système: pipéridine (1) - tétrahydropyranne (2)

	T = 303.15 K		T = 34	43.15 K
x_1	<i>y</i> 1	P/kPa	<i>y</i> 1	P/kPa
0.0	0.000	11.839	0.000	56.912
0.1	0.053	11.285	0.062	54.642
0.2	0.108	10.716	0.126	52.304
0.3	0.167	10.125	0.194	49.888
0.4	0.233	9.511	0.269	47.391
0.5	0.308	8.876	0.352	44.818
0.6	0.395	8.220	0.445	42.171
0.7	0.497	7.545	0.551	39.452
0.8	0.621	6.842	0.674	36.649
0.9	0.779	6.091	0.820	33.734
1.0	1.000	5.255	1.000	30.648

	T = 298.15 K		T = 32	23.15 K
x_1	y1	P/kPa	<i>y</i> 1	P/kPa
0.0	0.000	33.447	0.000	85.379
0.1	0.018	30.686	0.023	78.622
0.2	0.037	28.030	0.047	72.083
0.3	0.057	25.432	0.074	65.639
0.4	0.082	22.847	0.105	59.184
0.5	0.111	20.227	0.143	52.622
0.6	0.149	17.514	0.191	45.849
0.7	0.202	14.641	0.257	38.744
0.8	0.287	11.520	0.357	31.152
0.9	0.456	8.039	0.540	22.863
1.0	1.000	4.041	1.000	13.581

Tableau 9 (suite) Système: pipéridine (1) – tert-butyl méthyl éther (2)

Système: N-méthyl pipéridine (1) – tert-butyl méthyl éther (2)

	T = 298.15 K		T = 32	23.15 K
<i>x</i> ₁	<i>y</i> ₁	P/kPa	y 1	P/kPa
0.0	0.000	33.447	0.000	85.379
0.1	0.020	30.723	0.025	78.705
0.2	0.042	28.052	0.052	72.153
0.3	0.068	25.396	0.083	65.627
0.4	0.099	22.729	0.120	59.065
0.5	0.137	20.028	0.166	52.427
0.6	0.188	17.277	0.225	45.677
0.7	0.259	14.455	0.304	38.777
0.8	0.367	11.534	0.420	31.664
0.9	0.557	8.474	0.611	24.234
1.0	1.000	5.216	1.000	16.320

Le mélange pipéridine + 1,4 dioxane présente en plus un azéotrope. La température T(Az), la pression P(Az) et la composition $x_1(Az)$ de cet azéotrope, ont été calculées à partir de l'équation de lissage, et sont données en tableau 10.

Pour les quatre systèmes binaires étudiés, l'enthalpie libre molaire totale d'excès est positive. Pour les systèmes contenant la pipéridine elle diminue lorsque la température augmente, tandis que pour le système *tert*-butyl méthyl éther + N-méthyl pipéridine elle augmente avec la température. Elle ne varie pratiquement pas dans l'intervalle de température 298.15-303.15 K, pour ce

Fig. 5 Equilibre liquide-vapeur pour le système: Pipéridine (1) – 1,4 dioxane (2) à deux températures: Δ-343.15 K; •-298.15 K. Les points sont les valeurs expérimentales. Les courbes représentent les valeurs calculées à l'aide des équations 3 et 4

Fig. 6 Equilibre liquide-vapeur pour le système: Pipéridine (1) – Tétrahydropyranne (2) à deux températures: △-343.15 K; x-303.15 K. Les points sont les valeurs expérimentales. Les courbes représentent les valeurs calculées à l'aide des équations 3 et 4

Fig. 7 Equilibre liquide-vapeur pour le système: Pipéridine (1) – tert-butyl méthyl éther (2) à deux températures: □-323.15; •-298.15 K. Les points sont les valeurs expérimentales. Les courbes représentent les valeurs calculées à l'aide des équations 3 et 4

Fig. 8 Equilibre liquide-vapeur pour le système: N-méthyl pipéridine (1) - tert-butyl méthyl éther (2) à deux températures: D-323.15 K; •-298.15 K. Les points sont les valeurs expérimentales. Les courbes représentent les valeurs calculées à l'aide des équations 3 et 4

T(Az)/K	P(Az)/kPa	<i>x</i> ₁ (Az)
298.15	5.132	0.379
303.15	6.613	0.370
313.15	10.664	0.352
323.15	16.615	0.339
333.15	25.096	0.330
343.15	36.815	0.323

Tableau 10 Température T(Az), Pression P(Az) et composition $x_1(Az)$ du point Azéotrope du système: **Pipéridine (1) – 1,4 dioxane (2)**

système. L'enthalpie libre molaire totale d'excès prend une valeur maximale pour la fraction molaire $x_i = 0.5$, pour tous les systèmes.

Aux résultats expérimentaux ainsi obtenus nous appliquerons la théorie du réseau rigide, dans sa version contribution de groupement fonctionnels [9], dans le cadre d'une étude des interactions moléculaires dans des mélanges binaires contenant des molécules polaires ou fortement polaires. Cette application fera l'objet d'une autre publication.

Bibliographie

- 1 J. Jose, Thèse de Doctorat de 3°Cycle, Lyon I, 1970.
- 2 J. A. Barker, Austr. J. Chem., 6 (1953) 23.
- 3 E. Hala et T. Boublik, Vapour Pressure of Compounds, Elsevier 1973.
- 4 D. V. S. Jain et R. S. Sidhu, J. Chem. Thermodyn., 16 (1984) 111.
- 5 S. Cabani et N. Ceccanti, J. Chem. Thermodyn., 5 (1973) 9.
- 6 J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds, Vols 1 and 2, Elsevier, Amsterdam 1950.
- 7 Physical Properties of Chemical Compounds, Volumes I et II, Advanced Chemical Series 1959.
- 8 R. C. Reid, J. M. Prausnitz et B. E. Poling, The Properties of Gases and Liquids, 4th Edition MacGraw-Hill 1987.
- 9 H. V. Kehiaian, J. P. Grolier et G. C. Benson, J. Chem. Phys., 11/12 (1978) 75.
- 10 C. Tsonopoulos, AICHE J., 20 (1974) 263.
- 11 C. Tsonopoulos, AICHE J., 21 (1975) 827.
- 12 D. Ambrose, J. H. Ellender, C. H. S. Sprake et R. Townsend, J. Chem. Thermodyn., 8 (1976) 165.
- 13 B. F. Belaribi, G. Belaribi, J. Jose et A. Ait-Kaci, J. Thermal Anal., (article soumis pour publication)
- 14 D. Zkmundova, J. Matous, J. P. Novak, V. Kubicek et J. Pick, Fluid Phase Equilibria, 54 (1990) 93.